Blind signal deconvolution based on pulsed neuron model

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Information Maximization and Blind Signal Deconvolution

In the following paper we investigate two algorithms for blind signal deconvolution that has been proposed in the literature. We derive a clear interpretation of the information theoretic objective function in terms of signal processing and show that only one is appropriate to solve the deconvolution problem, while the other will only work if the unknown filter is constrained to be minimum phas...

متن کامل

mortality forecasting based on lee-carter model

over the past decades a number of approaches have been applied for forecasting mortality. in 1992, a new method for long-run forecast of the level and age pattern of mortality was published by lee and carter. this method was welcomed by many authors so it was extended through a wider class of generalized, parametric and nonlinear model. this model represents one of the most influential recent d...

15 صفحه اول

An Adaptive Blind Deconvolution Signal Subspace Method

A blind deconvolution algorithm is introduced. The channel parameters are identi ed based on Maximum Likelihood (ML) criterion and the desired input is estimated using minimum variance estimation. Simulation results show the e cacy of our method. Its estimation error is usually less than other algorithms. Its rate of convergence is su ciently high and compete the others. Although, the algorithm...

متن کامل

Model Regularization with Blind Deconvolution

Introduction: Dynamic contrast-enhanced MRI (DCE-MRI) is physiological imaging tool used clinically to aid the diagnosis and treatment monitoring of a variety of diseases. Pharmacokinetic parameters can be estimated by fitting DCE-MRI data to one of many mathematical models. The two-compartment model used here describes the concentration of contrast agent (CA) in tissue with respect to three pa...

متن کامل

Blind deconvolution by simple adaptive activation function neuron

ThèBussgang' algorithm is one among the most known blind deconvo-lution techniques in the adaptive signal processing literature. It relies on a Bayesian estimator of the source signal that requires the prior knowledge of the source statistics as well as the deconvolution noise characteristics. In this paper we propose to implement the estimator with a simple adap-tive activation function neuron...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ITM Web of Conferences

سال: 2019

ISSN: 2271-2097

DOI: 10.1051/itmconf/20193004011